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Summary. A mathematical treatment is given for the flux of ions of one charge sign 
across lipid bilayer membranes. This treatment is a generalization of a previous analysis 
of the membrane conductance by D. Walz, E. Bamberg and P. L/iuger which was 
restricted to systems with negligible space charge in the membrane. The present theory 
includes space charge effects, and it is no longer assumed that the electric field strength 
in the membrane is constant. It is found that the ohmic membrane conductivity ~0 is 
reduced by space charges; if only ions of one charge sign are soluble in the membrane, 
20 approaches a limiting value for increasing concentration of the permeable ion in the 
aqueous solution. The theory also predicts the range in which the constant field approxi- 
mation is valid. It is found that space charge effects become predominant when the mean 
concentration of the permeable ion in the membrane exceeds 5 x 10 -s M. The current- 
voltage characteristic of the membrane remains practically linear even in the presence 
of a high space charge. It is therefore concluded that the experimentally observed non- 
linearity is caused mainly by the distortion of the potential energy profile of an ion due 
to image forces. 

In recent years, many conductance measurements with lipid bilayer 

membranes have been performed in which various kinds of inorganic and 

organic ions were added to the aqueous solutions bathing the membrane. 

The theoretical treatment of the membrane conductance (Ciani, Eisenman & 

Szabo, 1969; Walz, Bamberg & L/iuger, 1969; Neumcke & L~iuger, 1969) 
has been based on the assumption that the electric field strength in the 

membrane is independent of position. This assumption is justified in most 

cases because the ion concentration in the lipid film is usually very low so 
that space charge effects may be neglected. However, in experiments in 

which the charge carrier is a lipid-soluble ion, such as the tetraphenylborate 
anion (Liberman & Topaly, 1969), the constant field approximation 

becomes questionable. In this case, the potential profile in the membrane 
may be distorted to an appreciable extent owing to the presence of space 

charges. This complication has already been envisaged by LeBlanc (1969) 
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who pointed out that the membrane conductance in the presence of lipid- 
soluble ions might be limited by space charges. 

For a general treatment of the conductance in the three-phase system 
(solution 1/membrane/solution 2), the Poisson equation has to be combined 
with the Nernst-Planck equations describing the fluxes of the different ion 
species. As this has to be done for each phase separately, a system of non- 
linear differential equations is obtained which cannot be solved in dosed 
form. Such an analysis has in fact been carried out by Bruner (1965a, b, 
1967). In this communication, we show that the treatment may be consid- 
erably simplified if the appropriate boundary conditions at the film-solution 
interface are introduced. The main results of the present analysis are: 
(1) the membrane conductivity remaines finite even if the lipid solubility of 
a single ion species is increased indefinitly; and (2) the presence of space 
charges in the membrane does not greatly affect the current-voltage charac- 
teristic of the film. In addition, the theory clearly indicates the range of 
experimental conditions under which the constant field approximation is 
applicable. 

Mathematical Description of the Nonequilibrium Stationary State 

We consider the membrane as a thin homogeneous film of thickness d 
interposed between identical electrolyte solutions (see Fig. 1). The aqueous 
phases contain a number of univalent ion species, but we assume that only 
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Fig. 1. Thin homogeneous membrane of thickness d and dielectric constant e m interposed 
between aqueous phases of dielectric constant e. The electrical potential ~(x) is drawn 
schematically for the case that only anions are soluble in the membrane (U=external 

voltage) 
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one ion species of valency z = ___ 1 is soluble in the membrane.  The concen- 
tration of the permeable ion in the solution is denoted by c and the total 
salt concentrat ion by c o . We further assume sufficient stirring in the aqueous 
solutions so that  polarization phenomena  are excluded. If a voltage U is 
applied across the membrane,  there will be a flux of permeable ions which 
is described by the Nernst-Planck equation. In general one must  solve this 
equation for both the aqueous phases and the membrane.  In the present 
case, however, the treatment may be simplified owing to the fact that  at all 
practical current densities the ion concentrations in the Gouy-Chapman 
layer of the aqueous solutions remain near the equilibrium distribution 
(see Appendix A). This means that  in the aqueous phases the Nernst-Planck 
relation may be replaced by the Boltzmann equation. 

For  x>d/2,  the total concentrations of positive and negative ions, 
c ~ (x) and c ~ (x), are then connected with the electric potential ~ (x) by the 
Boltzmann relations (compare Fig. 1) 

cO ex [ 
and 

where F = Faraday constant, R = gas constant, and T =  absolute temperature. 

Combining Eqs. (1) and (2) with the one-dimensional Poisson equation 

d2ff/ 4n 
- F .  [c  ~ ( x ) -  c ~ ( x ) ] ,  (3)  

where ~ = dielectric constant of water, yields 

with 

(4) 

x2 - 8nF2c ~ . F -~(x)  . F .  U 
~RT ' q)(x)----RT ' U=--RT (5) 

1/x is the Debye-Hiickel length (1/~c ~ 10 A for T=298  ~ and c ~ =0.1 M). 

The differential Eq. (4) has to be solved with the boundary conditions 

u dq~ 
q~(~)=~-,  (--d~-x)~= =0 .  (6) 

A first integration gives 

d ~  2 x sinh ; x >~- .  (7) 
dx T - 4 -  
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For x <  -d/2,  we obtain in the same way 

dOdx - 2x sinh ~-+~-  ; x < ---.2 (8) 

The steady state current density J in the membrane is given by the 
Nernst-Planck equation 

j=_zFD(__~_x +ZC. d~o,. ]' 2d < x < d  (9) 

where D and C are the diffusion coefficient and the concentration, respect- 
ively, of the permeable ion in the membrane, and Om is the electrical potential 
in units RT/F. This equation has to be combined with the Poisson equation 

d2 q)m _ 4 n z F 2 
d ~-~ em RT " C(x). (10) 

Introduction of the dimensionless variables 

and 

gives 

r ~ (11) 

n . F . d  a .J 
J= 2e m. RT.  D (12) 

d a O,~ . d 2  O,~ d Om 
d-~-~  z'---d-~" d--~-= - j ,  (13) 

which can be integrated to 

d - -~  + ~- = - j .  {+A.  (14) 

The integration constant A has to be determined by the boundary conditions 
at the membrane/solution interfaces. In the absence of surface charges, the 
boundary conditions for the electric field read 

and 

{dom~ 
e ( - ~  ),=_l=eml, d~ ],=-1' 

=e,, \ d~ ]r 

(15) 

(16) 

The values of the potential O ( 0  at the interfaces ~ = _+ 1 will be denoted by 

and 
r  1)=o,.(-1), 

o"=o(~)=o,,(1). 

(17) 

08) 
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Then we obtain f rom Eqs. (7), (8), (15) and (16): 

and 

(pr , U ~  {d~o,,,] = ~d fi-C sinh (-~-+~-) 
\ d~ /r em 

d~ ,/r '~m \--2-----4--] " 

(19) 

(20) 

If there are fixed charges at the membrane surfaces, an additional term has 
to be introduced into these equations (Neumcke, 1970). 

Two other boundary conditions hold for the second derivative of ~o(~). 
We assume that  the concentration profile of the permeable ion at the mem- 
brane/solution interfaces can be characterized by a partit ion coefficient y: 

and 
C ( -  1) =~, c ( -  1)= y c e -z (~' +./2) 

C(1) = 7  c ( 1 ) =  V c e -z  (~o,,-u/2) 

(21) 

(22) 

Insertion of Poisson's equation (lO) gives 

d ~ ] = z (~,. d) z e_ z (~.+./2), (23) - - ~ I ~ = - i  g 

with 

d ~0,, ] _ z (x n d) 2 e_ z {~,"-,/2), (24) 

~:~_ 8 zc F 2 y c (25) 
emRT 

By the six boundary conditions (17)-(20) ,  (23) and (24), the system is 
completely defined. Two of these relations give the integration constants 
of the second-order differential equation (14). The remaining four relations 
specify the parameters ~o', qY', A and j. 

Specia l izat ion to the Equilibrium State  

The equilibrium state is characterized by u = 0, j = 0 and 

~o(-~)=~0(r ~(- r  
and 

d~ /~=o 

(26) 

(27) 
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From these boundary conditions and from Poisson's equation (10), together 
with C ( 0 ) = y c - e x p  [ - z  ~0m(0)], we obtain for the constant A in the differ- 
ential equation (14): 

[ d 2 _~ ~ z d) 2 e -z ~" (~ . (28) 
A =  = - T "  

The solution of Eq. (14) then reads: 

q~m (~) = q~m(0) + 2z �9 In [ cos(�88 I, (29) 
with 

~ -  e-Z ~,m (0)/2 (30) 

To express the quantity ~t by the experimental parameters of the system, 
we apply Eqs. (14) and (29) to ~ = 1. This gives, after inserting Eqs. (20), 
(24) and (28), the following relation 

xm d.  ~2. sin (~ xm d/4) = x d 8 [cos 2 (o: xm d/4) - 0c 2] (31) 
~ra 

which must be solved numerically. 

From Eq. (29), we obtain for the equilibrium concentration, C~ , of 
the permeable ions in the membrane 

The ohmic conductivity 

7c~ 2 
cos 2 (x,, dct 4/4) " (32) 

dJ 
2o = - (-3-U-)v=o (33) 

is connected with ccq(O by the following expression (see Appendix B)" 

1 R T d  ~ d~ 
-~o = ~ 2 1 " - ~ r  " (34) 

Inserting Eq. (32) gives 

1 
2o 

R T d  [~.~ sin(0ctcmd/2)] 
- ~ + ~3 ~cm d J" (35) 

This expression, together with Eq. (31), describes the ohmic membrane 
conductivity in the general case in which space charges may be present in 
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Fig. 2. Ohmic membrane conductivity 2 o (after Eq. (35)), divided by the constant field 
conductivity (20)c.f. (Eq. (36)) as a function of tc,,d. For  the evaluation of Eq. (31), the 
following values were used: em = 2 ,  e =78.5, l/x__< 100 A, c o_>_ 10 -3 M; for Co>_ - 10 -3 M, 

the result is practically independent of Co 

the membrane.  For  a discussion of Eq. (35), we consider the following two 
limiting cases: 

(1) Kind--,0. In this limit we obtain f rom Eq. (31) 

and from Eq. (35) 
c~,~l, or (p~(0)~0, 

F z D ? c = (2o)c. f.. 
20 ~ R T d  (36) 

~md--,0 means that  the Debye-Hfickel parameter,  1/~cm, in the membrane 
is much larger than the membrane thickness d. As ~m = const �9 l/)-c (Eq. (25)), 
this limiting case occurs when the concentration of charge carriers in the 
membrane becomes very small. In fact, Eq. (36) is the expression for the 
membrane conductivity which is directly obtained using the constant field 
approximation (Walz et al., 1969). Eq. (36) is also in agreement with the 
limiting relationship (Eq. (29A) of Eisenman, Ciani & Szabo (1968), and 
Eq. (56) of Ciani et al. (1969) for the case where the permeant  species is 
the I S  + complex between a cation and a macrotetralide molecule (i.e., 
7c =k~, �9 C~, in their terminology). 

By comparing Eq. (36) with Eq. (35), it is thereby possible to test the 
range in which the constant field approximation is valid. This is done in 
Fig. 2 in which 2o divided by the constant field conductivity (2o)c.f. is 
plotted as a function of i%,d. The parameter ~cds/~,, was calculated using 
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the values em =2, 8 =78.5, d = 7 0  A, 1/x _-< 100 A (Co _-> 10- 3 u) ;  for Co >= 10- 3 M, 
the result is practically independent of Co. It may be seen from Fig. 2 that  
the deviation of 20 from (2o)~.e" owing to space charges is only a few percent 
up to t c m d = l .  With d = 7 0 A  and era=2, rc, ,d=l corresponds to a mem- 
brane concentration 7 c - 5 • 10- 5 M. This is equivalent to a concentration 
of 2 x 101~ ions per cm 2 of the membrane or to a mean distance of 700 A 
between the ions .  

(2) ~ , , d  ~ oo ( b u t  ~ : d f i n i t e ) .  In this case, the solution of Eq. (31) is 

~ x , ~ d = 2 n ,  or [~Om(0)l=21n Ic,,d (37) 
2re 

( s e e  Appendix C). Using Eqs. (35) and (25), we then obtain for the mem- 
brane conductivity the expression 

oo n em D 
20 = d3 (38) 

This means that  the conductivity remains finite when the partit ion coeffi- 
cient 7 is increased indefinitely. Eq. (38) sets an absolute upper  limit for the 
ohmic conductivity of a membrane in which only ions of one sign are 
soluble. The existence of an upper limit of 20 corresponds to the fact that  
the ion concentration ceq(0) in the center of the membrane is also limited 
for 7 c ~ oo : 

c~qm'~ . . . .  - z  r (o) ~ n am R T  . 
t w -  r ~ ~ 2 F-~F~-d~, (7 c ~  ~ ) .  (39) 

Liberman and Topaly (1969) and also LeBlanc (1969) measured the 
conductivity of lipid bilayer membranes in the presence of the tetraphenyl- 
borate anion. They found that  the conductivity increased with increasing 
concentration, e, of the ion, but  reached a constant value of about 
10 -4 ohm-1  c m - a  at e > 10-3 M. If we assume that  this asymptotic con- 
ductivity is due to space charges, we obtain f rom Eq. (38) (with d =  70 A, 
em =2) for the diffusion coefficient of tetraphenylborate in the membrane,  
a value of D ~ 5  x 10-12 c m  2 s - 1 .  On the other hand, f rom the conductivity 
at low concentrations where Eq. (36) is valid, the partition coefficient 7 
may be calculated, if the value of D is known. With 2 o -  10-9 ohm-1  c m - z  
at c = 1 0  - 9  M, the partit ion coefficient becomes 7 ~-40. 

Results for the Nonequilibrium State 

For  j ~:0, the differential equation (14) cannot be solved by elementary 
methods. In principle, the solution may be expressed in terms of Airy 



62 B. Neumcke and P. L~uger: 

is / 

t / 
J 

0 

/ c=10-3 M 

�9 

5 

0 1 2 3 l, 5 6 
U - - - ~  

Fig. 3. Normalized current density j=_--$=Fd3/2~mRTD (Eq. (12)) as a function of 
voltage for different concentrations c of the permeable ion. The voltage u is expressed 
in units RT/F~_25.6 mV (25 ~ The values of the other parameters are ~, = 1, Co =0.1 M, 
e,, =2 ,  e = 78.5, d =  100 A. The dashed line corresponds to the limiting ohmic conductivity, 

2~ ~ (Eq. (38)), for high values of c 

functions (Bass, 1964; Sinharay & Meltzer, 1964), but we prefer a direct 
numerical integration. We chose an integration procedure similar to that  
of Bruner (1965b). First the differential equation (14) is split into 

and 

d~0m 
Y= d~ ' (40) 

d y  z 2 �9 
d e  q- -2Y = - J ' ~ + A "  (41) 

For  a given current j and an assumed value of qr Eq. (41) is then integrated 
starting f rom ~ = - 1 with the boundary conditions (19) and (23). At ~ = + 1, 
the obtained solution y(1) normally does not  conform with the boundary 
conditions (20) and (24) at ~ = + 1 and the differential equation (41). One 
therefore has to start the same procedure with an improved ~o' and repeat 
the integration until the value q)" obtained by numerical integration corre- 
sponds to the boundary conditions at ~ = + 1 within a given accuracy. 
After the exact values of ~o', ~o" for the given cu r ren t j  were determined, the 
voltage u was calculated from the first differential equation (40). 

Current-voltage curves obtained in this way for a partit ion coefficient 
= I and various concentrations c of the permeable ion are given in Fig. 3. 
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The dashed curve corresponds to the ohmic conductivity,  2~, in the limit 

c ~  ( x m d ~  oo). The following values of the parameters were chosen: 

Co =0.1 M, em =2 ,  8 =78.5, d =  100 A. This means that  at all concentrat ions c 

given in Fig. 3 the quant i ty  x,,,d is larger than  uni ty;  i.e., the space charge 

in the membrane  is high. Interestingly, the current-voltage curves remain 

practically linear, with only the curves for C = 1 0 - 2 M  and  c = 1 0 - a M  

showing a slight positive deviation f rom linearity. Thus, space charges in 

the membrane  do not  affect the shape of the voltage-current characteristic 

but  only the slope. The large nonlineari ty observed in experiments with 

lipid-soluble ions such as te traphenylborate  (Liberman & Topaly,  1969; 

LeBlanc, 1969) is likely caused by the distortion of the potential  energy 

profile in the membrane  owing to image forces (Neumcke & L~iuger, 1969). 

We wish to thank Dr. G. Adam for helpful discussions. The present work was 
financially supported by the Deutsche Forschungsgemeinschaft. 

Appendix A. Validity of the Boltzmann Ion Distribution 
in the Aqueous Phases 

We consider a point x in the Gouy-Chapman layer of the aqueous solution adjacent 
to the left-hand interphase of the membrane. We further assume that all ion concentrations 
are held constant at some point outside the Gouy-Chapman layer by stirring of the 
solution. As only the permeable ion species can cross the interface, the current density J" 
is given by the flux of this ion species which is described by the Nernst-Planck equation: 

J = - z F D w  (-~x +zc(x)-~x ) (42) 

where D w =diffusion coefficient in the aqueous phase. This equation may be written 
in the form 

d In c (x) d ~o J 
dx - z d ~  zFDwc(x ) " (43) 

For / = 0 ,  Eq. (43) is equivalent to the Boltzmann equation. Following Coster, 
George and Simons (1969), we conclude that the Boltzmann distribution is still a good 
approximation to the actual concentration profile as long as the inequality 

(44) 

holds throughout the Gouy-Chapman layer. For an estimate of the single terms of this 
inequality, we may replace dr by the mean potential gradient A e/A x, where A r is 
the potential drop in the Gouy-Chapman layer and Ax = 1/r is the thickness of the layer. 
If we restrict ourselves to potentials A ~o in the order of unity (corresponding to about 
25 mV), we may replace c(x) by a mean ion concentration which is of the order of the 
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bulk ion concentration c. With these approximations, Eq. (44) becomes (for z =  __+ 1): 

~/= ~ 1. (45) 

It is interesting to note that ~j is approximately equal to the ratio of the diffusion time, 
7:dill, and the translation time, Vtrans, of an ion in the Gouy-Chapman layer, rdlff is 
given by the Einstein relation: 

(11~) 2 
"Cdiff -- 2D,~ (46) 

Ttra, s is equal to the time needed for an ion to migrate across the Gouy-Chapman layer 
with the velocity v =J/cF: 

1/~: 
ztr"ns-- J/c F " (47) 

Therefore, 

q = 2  "Cdi ff  (48) 
"Ctrans 

As a typical example, we take C=10-2M, 1 / x = 1 0 A  (c~ M), Dw=10  -5 cm 2 s - I ,  
and a r =  10 -5 Acm-2  (corresponding to a membrane conductivity of 10 -4 ohm -1 cm -2 
and a voltage of 0.1 V across the membrane). With these values we obtain q~_ 10 -7. 
This means that the ion concentration in the Gouy-Chapman layer may be described 
by the Boltzmann equation even under nonequilibrium conditions. 

Appendix B. Relation between the Concentration Profile 
and the Membrane Conductivity 

For  generality, we assume that a number of different ion species Xi with valencies z~ 
and diffusion coefficients D i are soluble in the membrane. The total current density J 
is then the sum of the individual ion currents J~: 

J = ~ J ~ .  (49) 
i 

ari is given by the Nernst-Planck equation 

J~= - z~ F D~ ( f l ~  -+ z' c '  d q)'' ] x ] 

Rearrangement and integration leads to 

d d 
-T__<x<T .  (50) 

Ji a/2r dx  Ci(d/2) 
= I n  ~- z i ( q ) " -  q~'). (51) 

ziFDi -Ja/2 Ci(x) C i ( -d /2 )  

From Eqs. (21) and (22), we see that the right side of this equation is equal to z i u. The 
integral membrane conductivity is defined by 

J 
2=- u R T / F  " (52) 
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Inserting Eqs. (49) and (51), we obtain 

. F 2 z/2 Di (53) 
Z=-R--~-~  a/2 dx 

I 
- d [ 2  

If we introduce ~=2x/d and consider a single permeable ion species of diffusion 
coefficient D and valency z = ___ 1, Eq. (53) becomes 

1_ RTd (54) 
c(r 

Specialization to small voltages u (;~ ~ 20, C ~ C eq) then leads to Eq. (34). 

Appendix C. Proof of Eq. (37) 

With the abbreviations 

Eq. (31) reads 

lxmd==.y and - 0 ,  
~xd 
48m 

~ y . sin(~ y)=O [-c~ ct] . 

For y>>l, this equation is fulfilled by 

(55) 

 L/1 
,,~ ~ n l /  1 s i n ( ~ y ) ~ l ,  c o s ( ~ y ) ~ -  Oy 

a Y ~ - ~ - - - ~  V O y , 

up to terms of the order of (l/y) ~ In the limit ,9 =const,  y =  ~ ,  we therefore obtain 
my =7r/2, or o:tcmd=2r:. 
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